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Introduction

There are many tools to help scientists visualize data, ranging from Excel to sophisti-

cated graphing packages that allow a scientist to look at multivariate and multidimensional

data in a variety of ways. These visualization tools are considered essential, given the

amount and complexity of the data that many scientists work with. Previous researchers,

however, have emphasized the importance of mental imagery in scienti�c discovery (Kaplan

& Simon, 1990; Shepard, 1988; Thomas, 1999). What is the relationship between scienti�c

visualization and mental imagery?

There are, of course, several possibilities. First, it could be that because scientists have

access to such powerful visualization tools, mental imagery is used only when scientists do

not have access to the explicit scienti�c visualizations. Another possibility is that scientists

build up some sort of spatial representation of the data (similar, perhaps, to the qualitative

mental model discussed in Trafton et al., 2000), and then explore that spatial representation

with the visualization tools. If this latter possibility is true, how do scientists make the

connection between images on the screen and images in the head?

We are primarily interested in how working scientists use mental imagery and the re-

lationship of mental imagery to computer-generated scienti�c visualizations. Thus, we will

use the in vivo approach pioneered by Dunbar (1995, 1996).

In order to explore these issues, we have developed a framework for coding and working

with spatial imagery called Spatial Transformations. Spatial Transformations are cognitive

operations that a scientist performs on a visualization. Sample spatial transformations are

mental rotation (e.g., Shepard & Metzler, 1971), creating a mental image, modifying that

mental image by adding or deleting features to or from it, time series progression prediction,

mentally moving an object, mentally transforming a 2D view into a 3D view (or vice versa),

comparisons between di�erent views (Kosslyn, Sukel, & Bly, 1999), and anything else a

scientist mentally does to a visualization in order to understand it or facilitate problem
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solving. Also note that a spatial transformation can be done on either an internal (i.e.,

mental) image or an external image (i.e., a scienti�c visualization on a computer-generated

image). What all spatial transformations have in common is that they involve the use of

mental imagery. A more complete description of spatial transformations can be found at

http://iota.gmu.edu/users/trafton/405st.html.

We will examine the number of times working scientists created or changed an existing

external visualization (called physical transformations) and compare that to the number

of spatial transformations. This will show us the relative importance of mental imagery

in scienti�c visualization; if scientists spend most of their time creating and manipulating

physical images and relatively little time on spatial transformations, this will suggest that

scientists do not use much mental imagery while looking at computer-generated scienti�c

visualizations. On the other hand, if there are many more spatial transformations than

physical transformations, this will suggest that mental imagery is an important part of

scienti�c visualization. If mental imagery is an important part of scienti�c visualization (as

we expect), then we should �nd spatial transformations that \connect" the physical display

to the mental imagery.

Method

Two datasets were examined. In the �rst dataset, two astronomers were video-taped

as they explored computer generated visual representations of a new set of observational

data. The astronomers were instructed not to explain their comments to the researchers,

but to carry out their work as though no camera were present. The relevant part of the

session lasted about 53 minutes. A more complete description of this dataset can be found

in Trickett, Fu, Schunn, and Trafton (2000) and Trickett, Trafton, and Schunn (2000).

In the second dataset, a physicist with a specialty in computational uid dynamics

was examining a subset of results from a computational model that had recently �nished

running. The scientist had already developed hypotheses and was trying to model another

set of data that had been gathered empirically. The scientist was asked to provide a think-

aloud protocol as he worked (Ericsson & Simon, 1993). The relevant part of the session

lasted about 14 minutes.

All scientists had earned their Ph.Ds over 6 years previously. All utterances were tran-
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scribed and segmented, and all o�-task segments (e.g., jokes, interruptions, etc.) were

discarded for the rest of the data analysis.

Spatial Transformation Example Explanation

Create Mental Image I mean, in a perfect, in a perfect Scientist is creating a mental
world, in a perfect sort of image of a spider diagram; there
spider diagram... is no spider diagram displayed.

Mentally Manipulate: So that [line] would be below Scientist is adding a new
Add the black line (hypothesizied) line to a

current visualization

Comparison: Maybe it's a projection e�ect, Scientist is comparing a
Mental Image to Display although if that's true, there should current image to a previously

be a very large velocity dispersion. created mental image.

Table 1: Examples of spatial transformations.

The number of times a scientist created a new visualization, the number of times a

scientist modi�ed an existing visualization, and the number of spatial transformations were

recorded. Table 1 shows several examples of spatial transformations that were used by the

scientists.

Results

First, it should be noted that the overall use of spatial transformations in both datasets

is remarkably similar. This result is especially surprising because the two datasets were so

di�erent in terms of domain, number of scientists, stage of research, etc. Separate coders

worked on each dataset, so this similarity in patterns does not appear to be an individual

coder e�ect.

As Figure 1 shows, there are far more spatial transformations than physical transforma-

tions, �2s for both datasets signi�cant at p < :001. Additionally, it is obvious that the most

common type of spatial transformations are comparisons, �2s for both datasets signi�cant

at p < :001. These �ndings suggest that imagery is important in the scienti�c visualization

process. Scientists do not use the computer's visualization capabilities instead of their own

mental imagery but instead seem to use both mental imagery and the computer's visual-

izations. Not only do they use features of the software to tweak the visual image, but they

also use spatial transformations to make mental adjustments to that image. Furthermore,
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Figure 1. Spatial Transformation Breakdown for both datasets. MI is mental image. The leftmost
(gray) bars show the number of physical transformations (new visualizations and the number of
times an on-screen visualization was adjusted or modi�ed) and the dark bars show the number of
spatial transformations.
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they create and interpret mental images that are di�erent from the images in the visual

display.

How do scientists connect the mental imagery and the scienti�c visualizations? The

extensive use of comparisons between displays and mental imagery in both datasets suggests

that scientists use a comparison process to tie these di�erent visualizations together. In

order to explore further the role of comparisons, we coded what the comparisons were used

for and related that to the type of comparison made (display to display or mental image to

display). This coding was made with the physics dataset alone.

There were three types of comparisons: (a) Determining ID, (b) Aligning, and (c)

Comparing surface features. Determining an ID was coded when a comparison was made

to get an identi�cation of one of the objects. Aligning was coded when the scientist tried

to make an estimation of \�t" between the two images. Comparing surface features was

coded when a speci�c feature of the two images was compared (i.e., colors, size, etc.).

Table 2 shows examples of each type.

Comparison Type Number Example Explanation

Determining ID 2 . . . except for oh-two who Scientist �nds oh-two
marginally wasn't seeded. . . to try to locate where two-oh
which is two-oh's symmetric is
counterpoint. . .

Aligning 13 Well, on the contour plots Scientist is remembering a
we saw this spot right here previous contour plot and
is like a one-three situation making an ID on a spot and

then making an estimation
of how the two spots �t

Comparing Features 9 Uh, the one-three is actually Scientist is looking at the
smaller than the oh-three size of two spots

Table 2: Examples of di�erent types of comparisons and the number of each type that occurred in
the physics dataset.

Interestingly, there is a strong relationship between the type of comparison and what

items were being compared. When the scientist was comparing 2 images on screen, he was

most frequently comparing features (89%), and when he was comparing an image on the

screen and a mental image, he was most frequently aligning (85%). As Figure 2 suggests,

this relationship is signi�cant, r� = :726; p < :001
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Figure 2. The type of comparison that was made broken down by how that comparison was used
(physics dataset). There were only two instances of using a comparison to make an ID, so that
category was excluded.

Discussion

This study has shown that, even though today's scientists have very sophisticated sci-

enti�c visualizations, they still use a great deal of mental imagery. They frequently make

mental adjustments to an external image as well as create and interpret a mental image.

They keep these mental images connected to the current visualization by means of compar-

isons between di�erent images. As one might expect, comparisons between two displayed

images focus primarily on the similarities and di�erences between features of those images.

However, when the scientists compare displayed images with mental images, they focus on

aligning the mental image with the display, in order to estimate the extent to which the

mental image \�ts" the display image.

The process of aligning, or estimating a �t, may be similar to the process of building

a theoretical or computational model and comparing it with empirical data. For example,

scientists may mentally create a well understood image from a previous project, and then
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modify it in various ways to compare it to a current visualization. This process may then

help them understand the deep structure and theory behind the creation of the current

visualization.
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